Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Hartman, W. W. \& Silloway, H. L. (1955). Org. Synth. 3, 82-84.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Larson, A. C. (1969). In Crystallographic Computing, edited by F. R. Ahmed, pp. 291-296. Copenhagen: Munksgaard.

Acta Cryst. (1991). C47, 2478-2479

$N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}$-Bis(m-xylyl)bis(4,13-diaza-1,7,10-trioxacyclopentadecane): a Multidentate Macrocyclic Complexing Agent Containing Two 15-Crown-5 Rings

By G. M. T. Cheetham and Marjorie M. Harding
Chemistry Department, Liverpool University, PO Box 147, Liverpool L69 3BX, England

(Received 25 February 1991; accepted 17 May 1991)

Abstract

C}_{36} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{6}, M_{r}=640 \cdot 84\), orthorhombic, Pbca, $a=22.460$ (9), $b=17.520$ (8), $c=9.04$ (1) \AA, V $=3557.2 \AA^{3}, \quad Z=4, \quad D_{x}=1.20 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Mo $K \alpha$ radiation, $\lambda=0.71069 \AA, \mu=0.76 \mathrm{~cm}^{-1}$, room temperature, $R=0.073$ for 970 reflections with $F>$ $6 \sigma(F)$. The molecule has symmetry $\overline{1}(i)$. In the crystal the central cavity of the whole molecule, bounded by two 15 -membered rings, is nearly closed and could not accommodate a cation; a pair of C atoms come within $2 \cdot 3 \AA$ of the inversion centre. All the O atoms point towards the centres of their 15 -membered rings. Substantial conformational change must occur when this multidentate chelating agent forms a complex with a cation.

Experimental. The title compound was prepared in 30% yield from α, α-dibromo-m-xylene and 1,10-di-aza-4,7,13-trioxacyclopentadecane, in a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and MeCN , and recrystallized from dichloromethane and heptane. Crystals were provided by Professor S. Mageswaren and Professor I. O. Sutherland, Liverpool University.
Crystal $0.28 \times 0.28 \times 0.12 \mathrm{~mm}$, preliminary oscillation and Weissenberg photographs gave unit cell and space group. Stoe Stadi-2 diffractometer, graphite monochromator, a and b parameters refined from 12 reflections with $14 \leq 2 \theta \leq 24^{\circ}$, Layers $l=$ $0-8$, with $h 0-24, k 0-18,2 \theta_{\max }=50^{\circ}$, recorded using ω scans, one standard reflection per layer, no significant variations in intensity. 2791 measured reflections, 2335 independent reflections, $R_{\text {int }} 0 \cdot 02$. Lorentz and polarization corrections. Structure solved by direct methods (SHELX86, Sheldrick, 1986) and difference Fourier maps. Least-squares refinement, on F, using 970 reflections with $F>$ $6 \sigma(F)$, since data was rather weak. Most H atoms located in difference Fourier maps; all H atoms, placed at calculated positions, included in F with U $=0.05 \AA^{2}$, but not refined. Anisotropic vibration

Table 1. Fractional atomic coordinates with e.s.d.'s in parentheses

f	$U_{\mathrm{cq}}=\left(U_{11}+U_{22}+U_{33}\right) / 3$.			
	x	y	z	$U_{\text {cq }}\left(\AA^{2}\right)$
$\mathrm{N}(1)$	$0 \cdot 1328$ (3)	$0 \cdot 1506$ (4)	$0 \cdot 1782$ (6)	0.0471 (46)
N(2)	-0.1172 (3)	0.0286 (3)	$0 \cdot 2508$ (7)	0.0408 (44)
$\mathrm{O}(1)$	0.0155 (3)	$0 \cdot 2276$ (3)	$0 \cdot 1560$ (7)	0.0597 (41)
$\mathrm{O}(2)$	-0.1060 (2)	$0 \cdot 1998$ (3)	$0 \cdot 1466$ (6)	0.0581 (41)
$\mathrm{O}(3)$	0.0446 (3)	0.0435 (3)	$0 \cdot 3086$ (6)	0.0435 (39)
C(1)	$0 \cdot 1026$ (3)	0.1999 (4)	$0 \cdot 2855$ (8)	0.0480 (58)
$\mathrm{C}(2)$	0.0658 (4)	0.2615 (5)	0.2194 (10)	0.0706 (71)
C(3)	-0.0254 (4)	0.2783 (5)	0.0952 (11)	0.0517 (69)
C(4)	-0.0758 (4)	0.2347 (5)	0.0284 (9)	0.0578 (67)
C(5)	-0.1457 (4)	0.1415 (5)	0.0992 (10)	0.0715 (75)
C(6)	-0.1611 (3)	0.0884 (4)	0.2247 (9)	0.0499 (58)
C(7)	-0.0609 (3)	0.0564 (4)	0.3148 (8)	0.0508 (60)
C(8)	-0.0094 (4)	0.0135 (5)	0.2541 (10)	0.0663 (75)
C(9)	0.0942 (4)	0.0199 (4)	0.2228 (10)	0.0543 (67)
C(10)	$0 \cdot 1446$ (3)	0.0742 (4)	0.2392 (9)	0.0457 (61)
C(11)	$0 \cdot 1866$ (3)	$0 \cdot 1866$ (4)	$0 \cdot 1197$ (8)	0.0325 (50)
C(12)	$0 \cdot 2052$ (2)	$0 \cdot 1537$ (2)	-0.0262 (5)	0.0389 (21)
C(13)	$0 \cdot 2619$ (2)	$0 \cdot 1716$ (2)	-0.0788 (5)	0.0463 (22)
C(14)	$0 \cdot 2807$ (2)	$0 \cdot 1440$ (2)	-0.2158 (5)	0.0535 (24)
C(15)	$0 \cdot 2427$ (2)	$0 \cdot 0985$ (2)	-0.3003 (5)	0.0508 (23)
C(16)	$0 \cdot 1860$ (2)	$0 \cdot 0805$ (2)	-0.2477 (5)	0.0413 (20)
C(17)	$0 \cdot 1673$ (2)	$0 \cdot 1081$ (2)	-0.1107 (5)	0.0402 (22)
C(18)	-0.1411 (3)	-0.0315 (4)	0.3399 (8)	0.0778 (65)

Table 2. Selected molecular geometry (in \AA and ${ }^{\circ}$)
Mean bond lengths

$\mathrm{C}-\mathrm{C}$	(not aromatic)	$1.490(6)$
$\mathrm{C}-\mathrm{N}$		$1.459(12)$
$\mathrm{C}-\mathrm{O}$		$1.407(17)$

Torsion angles	
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	$71 \cdot 4(8)$
$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(3)$	$176 \cdot 3(6)$
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$	$67 \cdot 1(8)$
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$	$-82 \cdot 9(8)$
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(1)$	$-65 \cdot 7(8)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(3)$	$176 \cdot 9(7)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)-\mathrm{C}(5)$	$-165 \cdot 2(7)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{C}(2)$	$178 \cdot 6(7)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(7)$	$70 \cdot 8(8)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}(4)$	$160 \cdot 7(7)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(3)-\mathrm{C}(9)$	$-162 \cdot 9(6)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(6)$	$-143 \cdot 6(7)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(1)$	$85 \cdot 8(8)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{C}(8)$	$156 \cdot 6(7)$
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$-153 \cdot 9(7)$

© 1991 International Union of Crystallography

(a)

(b)

Fig. 1. The numbering scheme for the title compound. (a) View of one constituent 15 -membered ring; $\mathrm{C}(18)$ and $\mathrm{C}(11)$ are joined to (centrosymmetrically related) benzene rings. (b) View of the whole molecule (hydrogens omitted for clarity) showing that in the crystal conformation there is no large central cavity. [Both views drawn by PLUTO (Motherwell, 1976).]
parameters refined for all C, N and O atoms; benzene rings constrained as regular hexagons with $\mathrm{C}-\mathrm{C}=1.395 \AA . R=0.073, w R=0.065,174$ parameters, $S=1.261$, weight $=1 /\left[\sigma^{2}(F)+0.00065(F)^{2}\right]$, maximum shift/e.s.d. $\leq 0 \cdot 4$, maximum and minimum electron density in final difference map 0.37, -0.41 e \AA^{-3}. The relatively high value of the final R factor and the need to omit many of the weaker intensities in the refinement reflects the overall weakness of the diffraction data obtainable. Refinement with SHELX (Sheldrick, 1976) using atomic scattering factors therein. Table 1 gives atom positions* and Table 2 selected information on bond lengths and angles. Views of the molecule are shown in Fig. 1.

Related literature. Like other crown ethers the compound is an efficient and selective multidentate chelating agent, e.g. $\mathrm{H}_{3} \mathrm{~N}^{+}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}^{+} \mathrm{H}_{3}$ are accommodated (Sutherland, 1985).

We acknowledge financial support from the Science \& Engineering Research Council.

* Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54273 (6 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Motherwell, W. D. S. (1976). PLUTO. A program for ploting molecular and crystal structures. Univ. of Cambridge, England.
Sheldrick, G. M. (1976). SHELX. A program for crystal structure determination, Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELX86. A program for crystal structure solution. Univ. of Göttingen, Germany.
Sutherland, I. O. (1985). Chem. Soc. Rev. 15, 63-91.

Acta Cryst. (1991). C47, 2479-2482

Structure of 4'-Demethyl-9-(3'-thymidyl)-epipodophyllotoxin

By Frank V. Sicheri, W. B. Derry, R. S. Gupta and D. S. C. Yang
Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada L8N $3 Z 5$

(Received 16 July 1990; accepted 29 April 1991)

Abstract

R-\left[5 \alpha, 5 \mathrm{a} \beta, 8 \mathrm{a} \alpha, 9 \beta\left(R^{*}\right)\right]\right\}-5,5 \mathrm{a}, 8 \mathrm{a}, 9-\) Tetra-hydro-5-(4-hydroxy-3,5-dimethoxyphenyl)-9-\{[1"($2^{\prime \prime}$-deoxy- β-D-ribofuranosyl)-5"'-methyluracilloxy\}furo $\left[3^{\prime}, 4^{\prime}: 6,7\right]$ naphtho $[2,3-d]$-1,3-dioxol-6($\left.5 \mathrm{a} H\right)$-one, $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{12}, M_{r}=624 \cdot 60$, monoclinic, $P 2_{1}, a=$


```
6.724 (1), b=16.251 (2), c=13.7598 (8) \AA, }\quad\beta
93.292(9)}\mp@subsup{)}{}{\circ},\quadV=1501.0(3)\mp@subsup{\AA}{}{3},\quadZ=2,\quad\mp@subsup{D}{x}{}
1.382 \mp@subsup{\textrm{g cm}}{}{-3},\quad\lambda(\textrm{Cu}K\alpha)=1.54178 \AA,}\quad\mu
8.63 \mp@subsup{\textrm{cm}}{}{-1},F(000)=656,T=296 K, final }R=0.05
for }1679\mathrm{ unique reflections.
```

